Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spray pyrolysis deposition of indium sulphide thin films

Identifieur interne : 002524 ( Main/Repository ); précédent : 002523; suivant : 002525

Spray pyrolysis deposition of indium sulphide thin films

Auteurs : RBID : Pascal:11-0214449

Descripteurs français

English descriptors

Abstract

In2S3 thin films were grown by the chemical spray pyrolysis (CSP) method using the pneumatic spray set-up and compressed air as a carrier gas. Aqueous solutions containing InCl3 and SC(NH2)2 ata molar ratio of In/S = 1/3 and 1/6 were deposited onto preheated glass sheets at substrate temperatures Ts = 205-410 °C. The obtained films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM,) optical transmission spectra, X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). According to XRD, thin films deposited at Ts = 205-365 °C were composed of the (0012) orientated tetragonal β-In2S3 phase independent of the In/S ratio in the spray solution. Depositions performed at Ts=410 °C led to the formation of the In2O3 phase, preferably when the 1/3 solution was sprayed. Post-deposition annealing in air indicated that oxidation of the sulphide phase has a minor role in the formation of In2O3 at temperatures up to 450 °C. In2S3 films grown at Ts below 365 °C exhibited transparency over 70% in the visible spectral region and Eg of 2.90-2.96 eV for direct and 2.15-2.30 eV for indirect transitions, respectively. Film thickness and chlorine content decreased with increasing deposition temperatures. The XPS study revealed that the In/S ratio in the spray solution had a significant influence on the content of oxygen (Me-O, BE = 530.0 eV) in the In2S3 films deposited in the temperature range of 205-365 °C. Both XPS and EDS studies confirmed that oxygen content in the films deposited using the solution with the In/S ratio of 1/6 was substantially lower than in the films deposited with the In/S ratio of 1/3.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0214449

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spray pyrolysis deposition of indium sulphide thin films</title>
<author>
<name sortKey="Otto, K" uniqKey="Otto K">K. Otto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086, Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086, Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Katerski, A" uniqKey="Katerski A">A. Katerski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086, Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086, Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mere, A" uniqKey="Mere A">A. Mere</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086, Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086, Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Volobujeva, O" uniqKey="Volobujeva O">O. Volobujeva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086, Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086, Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krunks, M" uniqKey="Krunks M">M. Krunks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086, Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086, Tallinn</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0214449</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0214449 INIST</idno>
<idno type="RBID">Pascal:11-0214449</idno>
<idno type="wicri:Area/Main/Corpus">003246</idno>
<idno type="wicri:Area/Main/Repository">002524</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Annealing</term>
<term>Aqueous solutions</term>
<term>Beta phase</term>
<term>Chlorine</term>
<term>Dispersive spectrometry</term>
<term>Indium</term>
<term>Indium chloride</term>
<term>Indium oxide</term>
<term>Indium sulfide</term>
<term>Layer thickness</term>
<term>Optical properties</term>
<term>Optical transmission</term>
<term>Oxidation</term>
<term>Pyrolysis</term>
<term>Scanning electron microscopy</term>
<term>Spray coatings</term>
<term>Temperature dependence</term>
<term>Tetragonal lattices</term>
<term>Thin films</term>
<term>Transparency</term>
<term>X-ray photoelectron spectra</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pyrolyse</term>
<term>Indium</term>
<term>Couche mince</term>
<term>Dépôt projection</term>
<term>Solution aqueuse</term>
<term>Chlorure d'indium</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Transmission optique</term>
<term>Spectre absorption</term>
<term>Spectre photoélectron RX</term>
<term>Spectrométrie dispersive</term>
<term>Réseau quadratique</term>
<term>Phase bêta</term>
<term>Sulfure d'indium</term>
<term>Oxyde d'indium</term>
<term>Recuit</term>
<term>Oxydation</term>
<term>Transparence</term>
<term>Epaisseur couche</term>
<term>Chlore</term>
<term>Dépendance température</term>
<term>Propriété optique</term>
<term>In</term>
<term>In2S3</term>
<term>InCl3</term>
<term>Substrat verre</term>
<term>In2O3</term>
<term>8115R</term>
<term>6855J</term>
<term>7866</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Chlore</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In
<sub>2</sub>
S
<sub>3</sub>
thin films were grown by the chemical spray pyrolysis (CSP) method using the pneumatic spray set-up and compressed air as a carrier gas. Aqueous solutions containing InCl
<sub>3</sub>
and SC(NH
<sub>2</sub>
)
<sub>2</sub>
ata molar ratio of In/S = 1/3 and 1/6 were deposited onto preheated glass sheets at substrate temperatures T
<sub>s</sub>
= 205-410 °C. The obtained films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM,) optical transmission spectra, X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). According to XRD, thin films deposited at T
<sub>s</sub>
= 205-365 °C were composed of the (0012) orientated tetragonal β-In
<sub>2</sub>
S
<sub>3</sub>
phase independent of the In/S ratio in the spray solution. Depositions performed at T
<sub>s</sub>
=410 °C led to the formation of the In
<sub>2</sub>
O
<sub>3</sub>
phase, preferably when the 1/3 solution was sprayed. Post-deposition annealing in air indicated that oxidation of the sulphide phase has a minor role in the formation of In
<sub>2</sub>
O
<sub>3</sub>
at temperatures up to 450 °C. In
<sub>2</sub>
S
<sub>3</sub>
films grown at T
<sub>s</sub>
below 365 °C exhibited transparency over 70% in the visible spectral region and Eg of 2.90-2.96 eV for direct and 2.15-2.30 eV for indirect transitions, respectively. Film thickness and chlorine content decreased with increasing deposition temperatures. The XPS study revealed that the In/S ratio in the spray solution had a significant influence on the content of oxygen (Me-O, BE = 530.0 eV) in the In
<sub>2</sub>
S
<sub>3</sub>
films deposited in the temperature range of 205-365 °C. Both XPS and EDS studies confirmed that oxygen content in the films deposited using the solution with the In/S ratio of 1/6 was substantially lower than in the films deposited with the In/S ratio of 1/3.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spray pyrolysis deposition of indium sulphide thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OTTO (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KATERSKI (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MERE (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VOLOBUJEVA (O.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KRUNKS (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086, Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>3055-3060</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000192882090100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0214449</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In
<sub>2</sub>
S
<sub>3</sub>
thin films were grown by the chemical spray pyrolysis (CSP) method using the pneumatic spray set-up and compressed air as a carrier gas. Aqueous solutions containing InCl
<sub>3</sub>
and SC(NH
<sub>2</sub>
)
<sub>2</sub>
ata molar ratio of In/S = 1/3 and 1/6 were deposited onto preheated glass sheets at substrate temperatures T
<sub>s</sub>
= 205-410 °C. The obtained films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM,) optical transmission spectra, X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). According to XRD, thin films deposited at T
<sub>s</sub>
= 205-365 °C were composed of the (0012) orientated tetragonal β-In
<sub>2</sub>
S
<sub>3</sub>
phase independent of the In/S ratio in the spray solution. Depositions performed at T
<sub>s</sub>
=410 °C led to the formation of the In
<sub>2</sub>
O
<sub>3</sub>
phase, preferably when the 1/3 solution was sprayed. Post-deposition annealing in air indicated that oxidation of the sulphide phase has a minor role in the formation of In
<sub>2</sub>
O
<sub>3</sub>
at temperatures up to 450 °C. In
<sub>2</sub>
S
<sub>3</sub>
films grown at T
<sub>s</sub>
below 365 °C exhibited transparency over 70% in the visible spectral region and Eg of 2.90-2.96 eV for direct and 2.15-2.30 eV for indirect transitions, respectively. Film thickness and chlorine content decreased with increasing deposition temperatures. The XPS study revealed that the In/S ratio in the spray solution had a significant influence on the content of oxygen (Me-O, BE = 530.0 eV) in the In
<sub>2</sub>
S
<sub>3</sub>
films deposited in the temperature range of 205-365 °C. Both XPS and EDS studies confirmed that oxygen content in the films deposited using the solution with the In/S ratio of 1/6 was substantially lower than in the films deposited with the In/S ratio of 1/3.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15R</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Pyrolyse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Pyrolysis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépôt projection</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Spray coatings</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Solution aqueuse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Aqueous solutions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Chlorure d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium chloride</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio cloruro</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transmission optique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Optical transmission</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Transmisión óptica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Réseau quadratique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Tetragonal lattices</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phase bêta</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Beta phase</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Fase beta</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Oxydation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Oxidation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Transparence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Transparency</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Chlore</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Chlorine</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>In2S3</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>InCl3</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8115R</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>143</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002524 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002524 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0214449
   |texte=   Spray pyrolysis deposition of indium sulphide thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024